lördag 25 januari 2025

RealQM Spectrum of Helium: 1st Excited State as Orthohelium

We now explore the spectrum of Helium delivered by RealQM. The spectrum of an atom primarily reflects energy differences between the ground state and excited states, but also between excited states.

Standard Quantum Mechanics StdQM presents the first exited state of the Helium atom with two electrons to be a singlet state with the two electrons having opposite spin named Parahelium, but there is also a triplet state with the electrons having same spin named Orthohelium. 

The first line in the spectrum of Helium (smallest energy jump from ground state) corresponding to an energy of $-2.175$ Hartree is that of Orthohelium, compared to $-2.903$ for the ground state, while Parahelium has 0.03 higher energy of $-2.145$ Hartree. 

Let us see what RealQM delivers. Since in RealQM all electrons have the same spin, RealQM connects to Orthohelium giving the first line in the spectrum. We let RealQM model this state with one electron around the kernel and the other electron in an excited state outside. You can here run the code to find that RealQM gives an energy of $-2.175\pm 0.005$ Hartree depending on iteration stop criterion. 

We thus see that RealQM gives a result in agreement with observation of the 1st line in the spectrum of Helium in the form of a very simple arrangement of the two electrons: An inner electron around the kernel and an outer electron around the kernel + inner electron. Run code to see. The corresponding triplet state of StdQM is very complicated:



Orthohelium corresponds to the first line in the Lyman series for Hydrogen (with drop of wave length from 122 nm to 62.6 nm), with details on further lines to come.

PS The ground state of Helium with its two electrons overlapping with opposite spin in StdQM, is in RealQM modeled with the electrons split into halfspaces without overlapping. See this code. The transition to excited state in RealQM is thus from a state of half space split electrons into a state with spherically symmetric electrons, one inner and one outer, which appears to require a quite precise excitation input.

Inga kommentarer:

Skicka en kommentar