- The boundary layer of a wing initialised as laminar at stagnation point at leading edge, effectively turns into (acts like) slip with very small skin friction.
- This is because transition to a turbulent boundray layer on the leading edge is blocked by wall and damped by acceleration.
- The flow once turned into slip on leading edge stays with slip, because transition to turbulent boundary layer is not triggered by slip (no shear).
- The net is that the flow around a wing effectively acts as having slip, because transition to a turbulent boundray layer is not triggered by artificial device on leading edge.
- The large skin friction from flat plate experiments with artificial tripping should not be used for a wing. If used they give much too big skin friction drag.
- The new flight theory builds on slip. With no-slip (laminar or turbulent) the flow separates on crest destroying the functionality of the wing.
- We now can see slip as a "thin film" limit form of a laminar boundray layer with very small skin friction (without the negative aspect of no-slip of 6.), not as a limit form of a turbulent boundary layer with large skin friction, because of "by-pass" as discussed in previous post.
- The correct way to add skin friction to DFS is by the friction coefficient of laminar flow, which is an order of magnitude smaller than that of a turbulent bounder layer (used in RANS et cet).
- Comparison between experiments for a wing with and without tripping (and other experiments) show skin friction coefficient of size 0.002-3, much bigger than laminar skin friction as shown in this plot:
On the dream of a "laminar wing"
Without tripping the flow around a common wing under pre-stall conditions thus effectively satisfies a slip boundary condition with the very small friction of a laminar boundary layer, and then without the destructive crest separation from vanishing normal pressure in a laminar boundary layer.This means that already a common wing realises the dream of very small skin friction drag associated with a "laminar wing" as a wing with a laminar boundary layer. This explains why the search for further skin friction reduction by e g blowing or suction has not been successful. To reduce something which is already very small can be very difficult.
Inga kommentarer:
Skicka en kommentar