lördag 2 juli 2016

New Quantum Mechanics 4: Free Boundary Condition

This is a continuation of previous posts presenting an atom model in the form of a free boundary problem for a joint continuously differentiable electron charge density, as a sum of individual electron charge densities with disjoint supports, satisfying a classical Schrödinger wave equation in 3 space dimensions.

The ground state of minimal total energy is computed by parabolic relaxation with the free boundary separating different electrons determined by a condition of zero gradient of charge density. Computations in spherical symmetry show close correspondence with observation, as illustrated by the case of Oxygen with 2 electrons in an inner shell (blue) and 6 electrons in an outer shell (red) as illustrated below in a radial plot of charge density showing in particular the zero gradient of charge density at the boundary separating the shells at minimum total energy (with -74.81 observed and -74.91 computed energy). The green curve shows truncated kernel potential, the magenta the electron potential and the black curve charge density per radial increment.

The new aspect is the free boundary condition as zero gradient of charge density/kinetic energy.



Inga kommentarer:

Skicka en kommentar