![]() |
Niels Bohr on Confused Understanding. |
The crisis of modern physics can be seen to be a consequence of the fact that the foundation of modern physics in the form of Standard Quantum Mechanics StdQM described by Schrödinger's equation from 1926, still 100 years later is viewed as a deep mystery beyond comprehension, as witnessed by all leading physicists including Bohr, Schrödinger, Feynman....
Let me here expose the fundamental mystery as the mystery of the solution to Schrödinger's equation for an atom/molecule with $N$ electrons numbered 1,2,...,N, as a complex-values wave function $\Psi (x_1,x_2,...,x_N)$ depending on $N$ separate three-dimension coordinates $x_1,x_2,...,x_N$ altogether $3N$ spatial coordinates (plus time).
The wave function $\Psi$ is the crown jewel of StdQM, which theoretical physicists speak about with great pride and conviction: All there is to know about an atom/molecules is carried by its wave function $\Psi$ as it evolves in time according to Schrödinger's equation!
However, because of the many spatial dimensions $\Psi$ cannot be given a direct physical meaning, and instead a probabilistic meaning was assigned by Born in 1926. StdQM thus offers the following meaning of $\vert\Psi (x_1,x_2,...,x_N)\vert^2$ as
However, because of the many spatial dimensions $\Psi$ cannot be given a direct physical meaning, and instead a probabilistic meaning was assigned by Born in 1926. StdQM thus offers the following meaning of $\vert\Psi (x_1,x_2,...,x_N)\vert^2$ as
- the probability density for finding electron $i$ at the position $x_i$ for $i=1,...,N$.
To seek to understand, let us simplify to $N=1$ and so consider the Hydrogen atom H with just one electron, with wave function $\Psi (x)$ depending on a 3d space variable $x$:
- $\vert\Psi (x)\vert^2$ is the probability density of finding the electron at position $x$. (*)
We are thus led to inspect the meaning of "finding the electron at a specific position". What does it mean?
Is it really possible to experimentally "find an electron at a specific position" or "locate an electron to a specific point in space"?
To give a meaning to "finding an electron at a specific point" requires that we view an electron as a particle without extension in space. An electron is thus viewed as a point particle which can be found at different positions $x$ in space with probability density given by $\vert\Psi (x)\vert^2$.
To handle this, various compressions of $\Psi$ to computable form have been used in practice like Hartree-Fock and DFT with some success but also many shortcomings. In these compressions electron charge densities play a central role coming with a difficulty of electron density overlap. But if $\Psi$ before compression has no physical meaning, why should it have a physical meaning after compression?
Recall that one troubling contradiction of StdQM (avoided by RealQM) is to (see this post)
- first label identical electrons in the wave function $\Psi (x_1,x_2,...,x_N)$
- and then seek to remove the labels.
Recall that another troubling aspect is the support overlap of the electronic trial functions used in Hartree-Fock and so underlying DFT, an overlap which has to be controled through the Pauli Exclusion Principle introducing Pauli Repulsion as a purely mathematical phenomenon without physics (see this post).
Inga kommentarer:
Skicka en kommentar