Erwin Schrödinger expresses in his 1933 Nobel Prize lecture The Fundamental Idea of Wave Mechanics his view that atomistic physics is better described by continuous wave mechanics than by discrete particles and discontinuous jumps. Schrödinger thus attacks the by then dominating Copenhagen Interpretation represented by Dirac and Heisenberg with whom he shared the Nobel Prize. After all, Schrödinger got a part of the Prize and thus could ask for a part of the truth, instead of nothing.
Schrödinger makes a parallel with optics:
- In optics the old system of mechanics corresponds to intellectually operating with isolated mutually independent light rays.
- The new undulatory (wave quantum) mechanics corresponds to the wave theory of light.
- What is gained by changing from the old view to the new is that the diffraction phenomena can be accommodated or, better expressed, what is gained is something that is strictly analogous to the diffraction phenomena of light and which on the whole must be very unimportant, otherwise the old view of mechanics would not have given full satisfaction so long.
- It is, however, easy to surmise that the neglected phenomenon may in some circumstances make itself very much felt, will entirely dominate the mechanical process, and will face the old system with insoluble riddles, if the entire mechanical system is comparable in extent with the wavelengths of the "waves of matter" which play the same part in mechanical processes as that played by the light waves in optical processes.
- This is the reason why in these minute systems, the atoms, the old view was bound to fail, which though remaining intact as a close approximation for gross mechanical processes, but is no longer adequate for the delicate interplay in areas of the order of magnitude of one or a few wavelengths.
- It was astounding to observe the manner in which all those strange additional requirements developed spontaneously from the new undulatory view, whereas they had to be forced upon the old view to adapt them to the inner life of the atom and to provide some explanation of the observed facts.
In the end Schrödinger pays lip service to some form of complementary wave-particle theory in order in order not to turn the Nobel Banquet into a turmoil of shouting:
- Only in extreme cases...we think we can make do with the wave theory alone or with the particle theory alone.
What Schrödinger meant was that the wave picture should cover 99% of the scene, and thus have 99% of the Prize.
Dirac, Heisenberg and Schrödinger with ladies in Stockholm in 1933.
Inga kommentarer:
Skicka en kommentar